ISSN: 0970-938X (Print) | 0976-1683 (Electronic)

Biomedical Research

An International Journal of Medical Sciences

Abstract

Coca cola and pepsi cola impact burns repair and serum levels of endothelial growth factor and vascular endothelial growth factor receptor in rabbits

Objective: The present study was designed to evaluate comparatively the effects of coca cola and pepsi cola on skin burns repair, serum levels of Endothelial Growth Factor (EGF) and Vascular Endothelial Growth Factor Receptor (VEGFR) in rabbits.

Methods: Thirty Japanese white rabbits were randomly assigned into three groups; coca cola-treated group, pepsi cola-treated group and control group (n=10). Each rabbit was cauterized to make the second-degree skin cauterization burn (on d 0). Rabbits in coca cola-treated, pepsi cola-treated and control groups drank 20% coca cola, 20% pepsi cola and tap water, respectively. The tensile strength, blood glucose levels and serum levels EGF and VEGFR were determined.

Results: Burn repair periods of coca cola-treated group (22.88 ± 3.23 d) and pepsi cola-treated group (22.49 ± 3.02 d) were longer than that of control group (20.25 ± 3.11 d). Tensile strengths of coca colatreated and pepsi cola-treated rabbits were decreased compared to control rabbits. Blood glucose levels of all rabbits were sharply increased following cauterization burns, and reached the peak value on d 3, the increments in coco cola-treated, pepsi cola-treated and control groups were 36.32%, 37.50% and 29.47%, respectively. Serum EGF and VEGFR levels of coco cola-treated and pepsi cola-treated groups were slightly reduced after d 5 in comparison with control group.

Conclusions: Ingestion of cola and pepsi cola could inhibit burn repair and physics strength of the healed tissues, also reduced serum EGF and VEGFR levels. Such, burned patients should limit or cease to drink carbonated beverages.

Author(s): Gong Zhuandi, Lai Luju, Deng Yingying, Liang Haoqin, Wei Suocheng
Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+