Value of combined detection of routine blood, biochemical indexes and tumor markers for screening of patients with gastric cancer.

Xiao Ying1*, Jianling Zheng#1, Zhenhua Wang1, Zaihong Wang1, Xiaoyu Xu2

1Clinical Laboratory, Quzhou Hospital of Traditional Chinese Medicine Quzhou, Zhejiang 324002, PR China
2Department Oncology, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang 324002, PR China
#These authors contribute equally

Abstract

Objective: To investigate the clinical value of combined detection of routine blood, biochemical markers and tumor markers for screening of patients with gastric cancer.

Methods: A total of 106 patients with gastric cancer treated in our hospital from February 2016 to September 2017 were selected as study group, with another 90 healthy subjects undergoing physical examination during the same period as control group. The changes in blood routine, biochemical markers in serum and tumor markers were comparatively analyzed between the 2 groups.

Results: Compared with the control group, the levels of white blood cell (WBC) and platelet (PLT) count in the blood routine were significantly improved in the study group, with the difference being statistically significant (P<0.05); while the level of hemoglobin (Hb) was decreased in the study group of no statistical significance (P>0.05); the levels of Total Cholesterol (TC), High-density lipoprotein cholesterol (HDL-C) and Low-density lipoprotein cholesterol (LDL-C) in biochemical indexes were significantly decreased in the study group, with the difference being statistically significant (P<0.05); and the levels of such tumor markers as carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125) and carbohydrate antigen 199 (CA199) level were significantly increased in the study group of statistical significance (P<0.05).

Conclusion: The combined detection of blood routine, biochemical indexes and tumor markers is of important reference value for screening of patients with gastric cancer and can provide the basis for early treatment of the disease.

Keywords: Gastric cancer, Screening, Blood routine, Biochemical indexes, Tumor markers.

Accepted on December 2, 2017

Introduction

The occurrence of gastric cancer is a gradual process. It takes 3~5 years or even longer to be developed to gastric cancer from the initial gastritis and precancerous lesions but with no obvious symptoms in this course and the discovered disease is generally in the middle and late stage [1]. The early screening of gastric cancer is costly and opportunistic screening in outpatient service has been adopted all the way in our country, leading to early diagnosis rate lower than 10%. According to the difference in diagnosis and treatment stage, the postoperative 5-year survival rate is obviously varying, which is 90% in stage I, 66% in stage II, 51% in stage III and only 14% in late stage [2]. Therefore, the early screening of gastric cancer is more important than the later treatment and it has become a consensus of global gastric cancer researchers to rearrange common resources for diagnosis and treatment by applying more excellent medical resources to early screening of gastric cancer especially in the areas of high incidence so as to realize early diagnosis and treatment, reduce the incidence and improve the cure rate of the disease [3]. Gastric cancer is a result of multiple factors and the detection of a single marker is often of the contradiction between specificity and sensitivity, so the combined detection of multiple markers is of great significance for the screening and diagnosis of gastric cancer [4]. Blood testing is a widely accepted method in this regard and that the combined detection of multiple tumor markers in serum has been widely used for cancer diagnosis [5]. Therefore, this study explored and analyzed the clinical value of combined detection of blood routine, biochemical indexes and tumor markers in screening of gastric cancer patients so as to provide strong supports for accurate identification of gastric cancer prevalent population.
Subjects and Methods

Subjects

A total of 106 patients with gastric cancer treated in our hospital from February 2016 to September 2017 were selected as study group and among them there were 60 males and 46 females aged 53-75 with an average age of (64.6 ± 5.3) years, with the clinical stage (TNM) including stage I in 20 cases, stage II in 47 cases, stage III in 20 cases and stage IV in 19 cases. All of them were diagnosed with gastric cancer by pathological examination. Exclusion criteria: (1) patients with history of gastric cancer; (2) patients with other types of tumors; (3) patients with serious diseases of important organs such as heart, liver or kidney; (4) patients with incomplete clinical data. Another 90 healthy subjects undergoing physical examination during the same period were selected as control group, including 50 males and 40 females aged 54 -74 with an average age of (64.3 ± 5.1) years. There was no significant difference between the 2 groups in sex ratio and average age (P>0.05), as shown in Table 1.

Table 1. Comparison of general information in 2 groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Sex</th>
<th>Age(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Study group</td>
<td>106</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>Control group</td>
<td>90</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>t</td>
<td>4.674</td>
<td>5.474</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Methods

Test items

All subjects were extracted 5 ml fasting venous blood in the early morning and the blood was divided into two parts, one of which was used for routine blood test and the other was centrifuged at 3000 r/min for 10 min after a standstill time of 20 min-30min at room temperature followed by separation of the upper serum for biochemical and tumor markers detection [6]. The indexes of routine blood test include white blood cell count (WBC), hemoglobin (Hb) and platelet count (PLT); the biochemical indexes include total cholesterol (TC), high density lipoprotein (HDL-C) and low density lipoprotein (LDL-C); and the indexes of tumor marker detection include carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125) and carbohydrate antigen 199 (CA199).

Evaluation index

The levels of WBC, Hb and PLT in routine blood test, the levels of TC, HDL-C and LDL-C as well as the changes of CEA, CA125 and CA199 levels were compared and analyzed in the 2 groups.

Statistical processing

SPSS 21 software was used for statistical analysis and processing, in which the measurement data were assessed by t test and the enumeration data chi square test. P<0.05 suggested that there was statistically significant difference.

Results

Comparison of blood routine test between the groups

Compared with the control group, the levels of WBC and PLT in the blood routine were significantly improved in the study group, with the difference being statistically significant (P<0.05); while the level of Hb was decreased in the study group of no statistical significance (P>0.05), as shown in Table 2.

Table 2. Comparison of blood routine test between the groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Case(n)</th>
<th>WBC(10^9/L)</th>
<th>Hb(g/L)</th>
<th>PLT(10^9/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study group</td>
<td>106</td>
<td>7.74 ± 1.92</td>
<td>136.43 ± 21.87</td>
<td>234.06 ± 32.39</td>
</tr>
<tr>
<td>Control group</td>
<td>90</td>
<td>6.06 ± 1.51</td>
<td>139.65 ± 23.21</td>
<td>176.03 ± 27.44</td>
</tr>
<tr>
<td>t</td>
<td>7.83</td>
<td>1.24</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0.05</td>
<td>>0.05</td>
<td><0.05</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of biochemical index in serum between the 2 groups

Compared with the control group, the levels of TC, HDL-C and LDL-C in biochemical indexes were significantly decreased in the study group, with the difference being statistically significant (P<0.05), as shown in Table 3.

Table 3. Comparison of biochemical index in serum between the 2 groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Case(n)</th>
<th>TC (mmol/L)</th>
<th>HDL-C (mmol/L)</th>
<th>LDL-C (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study group</td>
<td>106</td>
<td>3.72 ± 1.43</td>
<td>2.69 ± 0.87</td>
<td>1.58 ± 0.54</td>
</tr>
<tr>
<td>Control group</td>
<td>90</td>
<td>4.96 ± 1.55</td>
<td>3.34 ± 1.13</td>
<td>2.42 ± 1.39</td>
</tr>
<tr>
<td>t</td>
<td>6.31</td>
<td>5.08</td>
<td>6.26</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of tumor marker levels between the 2 groups

Compared with the control group, the levels of such tumor markers as carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125) and carbohydrate antigen 199 (CA199)
level were significantly increased in the study group of statistical significance (P<0.05), as shown in Table 4.

Table 4. Comparison of tumor marker levels between the 2 groups (x̄±S).

<table>
<thead>
<tr>
<th>Group</th>
<th>Case</th>
<th>CEA (ng/ml)</th>
<th>CA199 (ng/ml)</th>
<th>CA125 (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>106</td>
<td>25.74 ± 8.57</td>
<td>47.69 ± 11.03</td>
<td>62.68 ± 5.15</td>
</tr>
<tr>
<td>Control</td>
<td>90</td>
<td>7.01 ± 1.67</td>
<td>18.22 ± 5.74</td>
<td>18.94 ± 6.02</td>
</tr>
<tr>
<td>t</td>
<td>29.06</td>
<td>19.33</td>
<td>24.28</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Summary: Compared with the control group, the levels of WBC and PLT count in the blood routine were significantly improved in the study group, with the difference being statistically significant (P<0.05); while the level of Hb was decreased in the study group of no statistical significance(P>0.05); the levels of TC, HDL-C and LDL-C in biochemical indexes were significantly decreased in the study group, with the difference being statistically significant (P<0.05); and the levels of such tumor markers as CEA, CA125 and CA199 were significantly increased in the study group of statistical significance (P<0.05). These results suggest that the combined detection of blood routine, biochemical indexes and tumor markers is of important reference value for screening of patients with gastric cancer and can provide the basis for early treatment of the disease.

Discussion

Tumor marker is a class of substances released by tumor cells in the course of its growth and development or produced by the interaction between tumor and host cells [6,7]. It can be seen in body fluids, cells or tissues, its detection can determine the presence of cancer, and its level changes can reflect tumor growth status as well as cell differentiation of vital significance for the diagnosis, treatment and prognosis of cancer [8,9]. At present, more than 100 tumor markers of high sensitivity and specificity have been found, among which CEA, CA125 and CA199 are the main tumor markers associated with gastric cancer [10]. CEA is of glycoprotein structure and located on the membrane of cancer cells. There may be a trace amount of CEA in serum of the normal population, while in patients with gastric cancer, CEA will be of higher concentration because it is prone to disordered Hb synthesis, resulting in a great decrease in the number of Hb generation. Because PLT can release transcription factors as well as PLT-derived growth factors with aggregation and degranulation in tumor microvessel, thereby stimulating the growth of tumor cells, so it tends to be increasingly high in cancer patients. Cholesterol, a main component of cell membrane [18], may be involved in the occurrence and development of gastric cancer through direct or indirect mechanism and particularly the cholesterol demand is expected to increase in the mitosis of tumor cells which is uncontrolled by the body, thus resulting in a great reduction of cholesterol content, a decreasing trend of TC level and a significant increase trend of LDL-C and HDL-C.

To sum up, the combined detection of blood routine, biochemical indexes and tumor markers is of important reference value for screening of patients with gastric cancer and can provide the basis for early treatment of the disease.

References

4. Bo LI, Hui C, Kang ZC. Association of proximal,distal resection margin distances in R0 gastrectomy with...
10. Wang HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Zhao ZS, Tao HQ. Expressions of Neutrophil Gelatinase-Associated Lipocalin in Gastric Cancer: A Potential Biomarker for Prognosis and an Ancillary Diagnostic Test. Anat Rec (Hoboken) 2010; 293:1855-1863.

*Correspondence to
Xiao Ying
Clinical Laboratory
Quzhou Hospital of Traditional Chinese Medicine
Quzhou
Zhejiang 324002
PR China