ISSN: 0970-938X (Print) | 0976-1683 (Electronic)

Biomedical Research

An International Journal of Medical Sciences

Abstract

Rapid Prototyping of Polymethyl Methacrylate as Replacement and Support of Spine in Human.

Rapid Prototyping is a process of manufacturing which finds a wide range of applications in the field of mechanical, industrial, aerospace and also in the electronics. Now-a-days due to their ease in the manufacturing of different materials and also the less time required for manufacturing and also some other advantages, they are being used in the field of medical and dentistry. Replacing the spine for humans or using biomaterials for support in the spinal cords is a place where rapid prototyping could be used for the manufacturing of those biomaterials. Spine is the backbone that encloses and also houses the spinal cord and protects them. There are various reasons that causes the fracture in the spine of the humans and this results in serious consequences to the spi-nal cord and also affects the human body from many doing operations. Some of the materials could be used for support in the human spine in case of injury and they can be used to replace the spine in case of some serious fractures and they should possess the properties and the strength to bear the weight and also to withstand the body conditions like temperature, pH level and also should protect the spinal cord effectively with a longer lifePolymethyl methacrylate (PMMA) is a reliable biomaterial that could be used for the replacement and also for support for spine in the humans to withstand the weight and the body conditions and have a longer life. The rapid proto-typing is a reliable method to manufacture the Polymethyl methacrylate (PMMA) to make the model of the human spine into the product. The model of the human spine could be made in some 3D modeling softwares and they can be also analyzed with some suitable software before manu-facturing. The integration between the modeling software and the rapid prototyping machine could be done before the manufacturing and by this method the injuries in the spine could be rec-tified in a cheaper and effective way.

Author(s): Jaiganesh V, Manivannan S, Maruthu B
Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+